Class XI - MATHEMATICS

Chapter 3 – TRIGONOMETRIC FUNCTIONS

Module -2/3

By Smt. Mini Maria Tomy PGT Mathematics AECS KAIGA

Distance Learning Programme: An initiative by AEES, Mumbai

LEARNING OUTCOME

In this module we are going to learn about

Sign of trigonometric functions in different quadrants

> Domain and range of trigonometric functions

> Behaviour of trigonometric functions in different quadrants.

Graph of trigonometric functions

Sign of trigonometric functions in different quadrants

	Ι	II	III	IV
sin x	+	+		
COS X	+			+
tan x	+	_	+	_
cosec x	+	+	_	
sec x	+	_	_	+
cot x	+		+	
	A 11	Silver	Tea	Cups

Domain and range of trigonometric functions

Function	Domain	Range
sin x	R	[-1, 1]
COS X	R	[-1, 1]
tan x	R -{ x : x = $(2n+1)\frac{\pi}{2}$, n \in Z}	R
cosec x	$R-\{ x: x=n\pi, n\in Z\}$	R – (– 1, 1)
sec x	R -{ x : x = $(2n+1)\frac{\pi}{2}$, n \in Z}	R – (– 1, 1)
cot x	R- { x : x = $n\pi$, n \in Z}	R

Behaviour of trigonometric functions in different quadrants.

	I quadrant	II quadrant	III quadrant	IV quadrant
sin x	increases from 0 to 1	decreases from 1 to 0	decreases from 0 to -1	increases from –1 to 0
COS X	decreases from 1 to 0	decreases from 0 to -1	increases from –1 to 0	increases from 0 to 1
tan x	increases from 0 to ∞	increases from - ∞ to 0	increases from 0 to ∞	increases from - ∞ to 0
cosec x	decreases from ∞ to 1	increases from 1 to ∞	increases from - ∞ to -1	decreases from -1 to $-\infty$
sec x	increases from 1 to ∞	increases from - ∞ to -1	decreases from -1 to $-\infty$	decreases from ∞ to 1
cot x	decreases from ∞ to 0	decreases from 0 to $-\infty$	decreases from ∞ to 0	decreases from 0 to -∞

GRAPH OF TRIGONOMETRIC FUNCTIONS 1) y = sin x

Example 1

Find the values of other five trigonometric functions if $\sin x = \frac{3}{5}$, x lies in second quadrant Solution: sin x = $\frac{3}{5}$, therefore cosec x = $\frac{5}{3}$ YZ = 3 units, XZ = 5 units, hence XY = 4 units Since x lies in second quadrant, 4

5

X

cos x, sec x, tan x and cot x will be negative.

Therefore,
$$\cos x = \frac{-4}{5}$$
, $\sec x = \frac{-5}{4}$, $\tan x = \frac{-3}{4}$ and $\cot x = \frac{-4}{3}$

Example 2 : Find the value of cos (-1710°). Solution: We know that values of cos x repeats after an interval of 2π or 360° . Therefore, $\cos(-1710^\circ) = \cos(-1710^\circ + 5 \times 360^\circ)$ $= \cos(-1710^{\circ} + 1800^{\circ})$ $= \cos 90^{\circ} = 0$

Find the value of $\sin \frac{-31\pi}{3}$

Solution: We know that sin(-x) = -sinx

Also, values of sin x repeat after an interval of 2π .

Therefore,
$$\sin \frac{-31\pi}{3} = -\sin \frac{31\pi}{3}$$

= $-\sin (10\pi + \frac{\pi}{3}) = -\sin \frac{\pi}{3} = -\frac{\sqrt{3}}{2}$.

