Class XII Chapter 4 - DETERMINANTS

Worksheet

MODULE ³/₄

MCQ/ one mark Questions

1	A and B are invertible matrices of the same order such that $(AB)^{-1} = 8$. If $ A = 2$, then $ B $ is equal to				
	a)16	b) 4	c)6	d) $\frac{1}{16}$	
2	The cofactor	of the element	a_{23} in $\begin{vmatrix} 1\\ -4\\ 0 \end{vmatrix}$	$ \begin{array}{ccc} 2 & -3 \\ 5 & 3 \\ 8 & -9 \end{array} $	is
	a)8	b) -4	c)13	d) -8	}
3	Let $A = \begin{bmatrix} x \\ 2 \\ 1 \end{bmatrix}$	$\begin{bmatrix} -3 & 1 \\ y & 1 \\ 1 & z \end{bmatrix}$. If	xyz = 7, $x = 1$	+ y - 6z =1	1 and I is the identity matrix
	of order 2.	Гhen, A. adjA	is equal to		
	a)7I	b) -5I	С)13I	d) -8I
4	If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and A_{ij} is Cofactor of a_{ij} , then value of Δ is given				
	$a)a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$ $b)a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$				
	c) $a_{31}A_{11} + a_{31}A_{11} + a_{31}A_{31} + a$	$a_{32}A_{12} + a_{33}A_{12}$	a ₁₃ d) <i>a</i> ₁	$_{2}A_{12} + a_{22}A_{12}$	$A_{22} + a_{32}A_{32}$
5	If A is a square matrix of order 2 and $ adj.A = 9$, then $ A $ is equal to				
	a)3	b)9	c)27		d)81
6	For any 2×2	matrix if A(ad	$jA) = \begin{bmatrix} 10\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\10 \end{bmatrix}$ then	A is equal to
	a) 20	b) 100		c)10	d) 0
7	The Value of k for which the matrix $\begin{bmatrix} k & 2 \\ 3 & 4 \end{bmatrix}$ has no inverse is				
	a) $k = \frac{3}{2}$	b)) $k = \frac{2}{3}$	c)) $k \neq \frac{3}{2}$	d)) $k \neq \frac{1}{2}$	<u>2</u> 3
8	If A is square matrix satisfying $A^2 = I$, then what is the inverse of A ?				
9	If A is non singular matrix of order 3 and $ A = 3$, then find $ 2A $				

¹⁰ If A is a square matrix of order 3 such that |adjA| = 64. Find $|A^T|$.

For what value of k, the matrix $A = \begin{bmatrix} 2-k & 3\\ -5 & 1 \end{bmatrix}$ is not invertible ?

Two Marks Questions

- ¹² Write A⁻¹ for A = $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ ¹³ If A = $\begin{bmatrix} 4 & 2 \\ 7 & -4 \end{bmatrix}$, write A⁻¹ in terms of A
- ¹⁴ Find the adjoint of $\begin{bmatrix} 1 & -3 \\ 6 & -2 \end{bmatrix}$
- ¹⁵ $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $A^{-1} = kA$, then find the value of k. Four/Six marks Questions

If
$$A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix}$$
, show that $A^2 - 5A - 14I = 0$. Hence find A^{-1}

17 Find the adjoint of the matrix
$$\begin{bmatrix} 4 & 1 & 3 \\ -3 & 6 & 4 \\ -2 & -2 & 5 \end{bmatrix}$$

18 Verify A.
$$(adj A) = (adj A)$$
. $A = |A| I$ for the following matrices

1)
$$\begin{bmatrix} -3 & -2 & 1 \\ -5 & 3 & 4 \\ -4 & -2 & 0 \end{bmatrix}$$
 2) $\begin{bmatrix} 3 & 0 & -3 \\ -5 & 6 & 4 \\ -1 & -2 & 5 \end{bmatrix}$

19 Find the inverse of each of the matrices (if it exists)

1)
$$\begin{bmatrix} 2 & -1 & 3 \\ 3 & 1 & -4 \\ -4 & -2 & 2 \end{bmatrix}$$
 2) $\begin{bmatrix} 2 & -2 & 1 \\ -5 & 0 & -4 \\ -1 & -2 & 3 \end{bmatrix}$
20 Let $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 8 \\ 7 & 9 \end{bmatrix}$. Verify that $(AB)^{-1} = B^{-1} A^{-1}$.