Class XII Chapter 4 - DETERMINANTS

Worksheet

MODULE 3/4

MCQ/one mark Questions

$1 \quad A$ and B are invertible matrices of the same order such that $(A B)^{-1}=8$.
If $|A|=2$, then $|B|$ is equal to
a) 16
b) 4
c) 6
d) $\frac{1}{16}$

2
The cofactor of the element a_{23} in $\left|\begin{array}{ccc}1 & 2 & -3 \\ -4 & 5 & 3 \\ 0 & 8 & -9\end{array}\right|$ is
a) 8
b) -4
c) 13
d) -8

3
Let $A=\left[\begin{array}{ccc}x & -3 & 1 \\ 2 & y & 1 \\ 1 & 1 & z\end{array}\right]$. If $\mathrm{xyz}=7, \mathrm{x}+\mathrm{y}-6 \mathrm{z}=11$ and I is the identity matrix of order 2. Then, A. adjA is equal to
a) 7 I
b) -5 I
c) 13 I
d) -8 I

4
If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ and A_{ij} is Cofactor of a_{ij}, then value of Δ is given by
a) $a_{11} A_{11}+a_{12} A_{21}+a_{13} A_{31}$
b) $a_{11} A_{21}+a_{12} A_{22}+a_{13} A_{23}$
c) $a_{31} \mathrm{~A}_{11}+a_{32} \mathrm{~A}_{12}+a_{33} \mathrm{~A}_{13}$
d) $a_{12} \mathrm{~A}_{12}+a_{22} \mathrm{~A}_{22}+a_{32} \mathrm{~A}_{32}$

5 If A is a square matrix of order 2 and \mid adj. $\mathrm{A} \mid=9$, then $|\mathrm{A}|$ is equal to
a) 3
b) 9
c) 27
d) 81

6 For any 2×2 matrix if $\mathrm{A}(\operatorname{adj} \mathrm{A})=\left[\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right]$ then $|A|$ is equal to
a) 20
b) 100
c) 10
d) 0

7 The Value of k for which the matrix $\left[\begin{array}{cc}k & 2 \\ 3 & 4\end{array}\right]$ has no inverse is
a) $\mathrm{k}=\frac{3}{2}$
b)) $k=\frac{2}{3}$
c)) $k \neq \frac{3}{2}$
d)) $k \neq \frac{2}{3}$

If A is square matrix satisfying $\mathrm{A}^{2}=\mathrm{I}$, then what is the inverse of A ? If A is non singular matrix of order 3 and $|A|=3$, then find $|2 A|$

If A is a square matrix of order 3 such that $|\operatorname{adj} A|=64$. Find $\left|A^{T}\right|$.
For what value of k , the matrix $\mathrm{A}=\left[\begin{array}{cc}2-k & 3 \\ -5 & 1\end{array}\right]$ is not invertible ?

Two Marks Questions

12 Write A^{-1} for $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$
13 If $\mathrm{A}=\left[\begin{array}{rr}4 & 2 \\ 7 & -4\end{array}\right]$, write A^{-1} in terms of A
14 Find the adjoint of $\left[\begin{array}{cc}1 & -3 \\ 6 & -2\end{array}\right]$
$15 \quad A=\left[\begin{array}{rr}2 & 3 \\ 5 & -2\end{array}\right]$ be such that $A^{-1}=k A$, then find the value of k.

Four/Six marks Questions

16
If $A=\left[\begin{array}{cc}3 & -5 \\ -4 & 2\end{array}\right]$, show that $A^{2}-5 A-14 I=0$. Hence find A^{-1}
17 Find the adjoint of the matrix $\left[\begin{array}{ccc}4 & 1 & 3 \\ -3 & 6 & 4 \\ -2 & -2 & 5\end{array}\right]$
18 Verify A. $(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=|A| I$ for the following matrices

1) $\left[\begin{array}{ccc}-3 & -2 & 1 \\ -5 & 3 & 4 \\ -4 & -2 & 0\end{array}\right]$
2) $\left[\begin{array}{ccc}3 & 0 & -3 \\ -5 & 6 & 4 \\ -1 & -2 & 5\end{array}\right]$

19 Find the inverse of each of the matrices (if it exists)

1) $\left[\begin{array}{ccc}2 & -1 & 3 \\ 3 & 1 & -4 \\ -4 & -2 & 2\end{array}\right]$
2) $\left[\begin{array}{ccc}2 & -2 & 1 \\ -5 & 0 & -4 \\ -1 & -2 & 3\end{array}\right]$

20 Let $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]$. Verify that $(A B)^{-1}=B^{-1} A^{-1}$.

