CHAPTER - 3

PLAYING WITH NUMBERS

MODULE - 1/2

INTRODUCTION:

$>$ Let us take 6 marbles. What are the possible ways of arranging them in rows?
$>$ If we arrange 1 in each row, there are 6 rows. 2 in a row then there are 3 rows, 3 in a row then there are 2 rows and 6 in a row there is only 1 row.
>6 can be written as the product of two numbers in different ways: $6=1 \times 6 ; 6=2 \times 3 ; 6=3 \times 2 ; 6=6 \times 1$
$>1,2,3$ and 6 are exact divisors of 6 and 6 is the multiple of $1,2,3$ and 6 .

FACTORS:

\Rightarrow A factor of a number is an exact divisor
>1 is a factor of every number
$>$ Every number is a factor of itself
$>$ Every factor is less than or equal to the given number
$>$ Number of factors of a given number are finite

MULTIPLES:

$>$ A number is a multiple of its factors
$>$ Every multiple of a number is greater than or equal to that number
$>$ Number of multiples of a given number is infinite
$>$ Every number is a multiple of itself

PERFECT NUMBERS:

$>$ A number for which the sum of all its factors is equal to twice the number is called a perfect number
$>$ e.g. Factors of 6 are $=1,2,3$ and 6
$1+2+3+6=12=$ Twice the number 6

PRIME NUMBERS AND COMPOSITE NUMBERS:

> The number 1 has only one factor (i.e. itself)
$>2,3,5,7,11$, etc are having exactly two factors 1 and the number itself
$>$ There are numbers $4,6,8,9,10,12$, etc having more than two factors

THINGS TO REMEMBER:

>1 is neither prime nor composite
$>$ Prime numbers: Numbers (other than 1) with only two factors namely 1 and itself
$>$ Composite numbers: Numbers that have more than two factors

SIEVE OF ERATOSTHENES METHOD:

$>$ Step 1: Cross out 1 because it is not a prime number.
$>$ Step 2: Encircle 2, cross out all the multiples of 2, other than 2 itself, i.e. $4,6,8$ and so on.
$>$ Step 3: You will find that the next uncrossed number is 3 . Encircle 3 and cross out all the multiples of 3 , other than 3 itself.
$>$ Step 4: The next uncrossed number is 5 . Encircle 5 and cross out all the multiples of 5 other than 5 itself.

Step 5: Continue this process till all the numbers in the list are either encircled or crossed out.
$>$ All the encircled numbers are prime numbers. All the crossed-out numbers, other than 1 are composite numbers. This method is called the Sieve of Eratosthenes.

1	2	3	4	5	6	7	8	9	$1 Q$
11	12	13	14	16	16	17	18	19	$2 Q$
21	22	23	24	25	26	27	28	29	$3 Q$
31	32	33	34	35	36	37	38	39	$4 Q$
41	42	43	44	45	46	47	48	49	$5 Q$
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	12
71	72	73	74	75	76	77	78	79	$8 Q$
81	82	83	84	85	86	27	88	89	$9 Q$
91	92	93	94	95	96	97	98	99	$10 Q$

THINGS TO REMEMBER:

>2 is the smallest prime number and is even
$>$ Every prime number other than 2 is odd
$>$ Two prime numbers whose difference is 2 are called twin primes

THANK YOU

