Sub: CHEMISTRY
Lesson : SOLUTIONS
Name: \qquad Roll No.: \qquad Date: \qquad
Maximum Marks : 20

READ THE FOLLOWING PASSAGE AND ANSWER THE QUESTIONS (5X1=5M)

Colligative properties of a solution depend upon the number of moles of the solute dissolved and do not depend upon the nature of the solute. However, they are applicable only to dilute solutions in which the solutes do not undergo any association or dissociation. For solutes undergoing such changes, van't Hoff introduced a factor, called van;t Hoff factor(i). This has helped not only to explain the abnormal molecular masses of such solutes in the solution but has also helped to calculate the degree of association or dissociation

1. Name the colligative property in which universal gas constant is involved?
2. What is the value of van't Hoff factor when the given electrolyte undergoes tetramerisation?
3. Why boiling point of water is increased on addition of sodium chloride into it?
4. What do you mean by isotonic solutions?
5. What is the value of $\mathrm{Ifor}_{\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \text { (very dilute)? }}$

ONE - WORD ANSWERS

6. Liquid ' Y ' has higher vapour pressure than liquid ' X '. Which of them will have higher boiling point.
7. Liquids A and B on mixing produce a warm solution. Which type of deviation from Raoult's law is shown?
8. Under what condition Van't Hoff factor is less than 1?
9. Two liquids X and Y boil at 380 K and 400 K respectively, which of them is more volatile?
10. Out of molarity (\mathbf{M}) and molality (m), which is temperature dependent?

(MULTIPLE CHOICE QUESTION)MCO (5X1=5M)

11. The unit of ebulioscopic constant is \qquad .
(i) $\mathrm{K} \mathrm{kg} / \mathrm{mol}$ or K (molality) ${ }^{-1}$
(ii) $\mathrm{mol} \mathrm{kg} / \mathrm{K}^{\text {or }} \mathrm{K}^{-1}$ (molality)
(iii) $\mathrm{kg} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$ or K^{-1} (molality) ${ }^{-1}$
(iv) $\mathrm{K} \mathrm{mol} \mathrm{kg}^{-1}$ or K (molality)
12. An unripe mango placed in a concentrated salt solution to prepare pickle, shrivels because
\qquad .
(i) it gains water due to osmosis.
(ii) it loses water due to reverse osmosis.
(iii) it gains water due to reverse osmosis.
(iv) it loses water due to osmosis.
13. The values of Van't Hoff factors for $\mathrm{KCl}, \mathrm{NaCl}$ and $\mathrm{K}_{2} \mathrm{SO}_{4}$, respectively, are \qquad .
(i) 2, 2 and 2
(ii) 2, 2 and 3
(iii) 1,1 and 2
(iv) 1,1 and 1
14. The value of Henry's constant K_{H} is \qquad .
(i) greater for gases with higher solubility.
(ii) greater for gases with lower solubility.
(iii) constant for all gases.
(iv) not related to the solubility of gases.
15. We have three aqueous solutions of NaCl labeled as ' A ', ' B ' and ' C ' with concentrations $0.1 \mathrm{M}, 0.01 \mathrm{M}$ and 0.001 M , respectively. The value of van't Hoff factor for these solutions will be in the order \qquad _.
(i) $\mathrm{iA}<\mathrm{iB}<\mathrm{iC}$
(ii) $\mathrm{iA}>\mathrm{iB}>\mathrm{iC}$
(iii) $\mathrm{i} \mathrm{A}=\mathrm{iB}=\mathrm{iC}$
(iv) $\mathrm{iA}<\mathrm{iB}>$ ic

ASSERTION -REASON TYPE (5X1=5M)
A statement of assertion is followed by a statement of reason. Mark the correct choice from the options given below:
(a) Both assertion and reason are true and reason is the correct explanation of assertion.
(b) Both assertion and reason are true but reason is not the correct explanation of assertion.
(c) Assertion is true but reason is false.
(d) Both assertion and reason are false.
16. Assertion : In an ideal solution, $\Delta_{\text {mix }} \mathrm{H}$ is zero.

Reason : In an ideal solution, A - B interactions are lower than A-A and B-B interactions.
17. Assertion : Osmosis does not take place in two isotonic solutions separated by semipermeable membrane.
Reason : Isotonic solutions have same osmotic pressure.
18. Assertion : Lowering of vapour pressure is not dependent on the number of species present in the solution.
Reason : Lowering of vapour pressure and relative lowering of vapour pressure are colligative properties.
19. Assertion : 1 M solution of KCl has greater osmotic pressure than 1 M solution of glucose at same temperature.
Reason : In solution KCl dissociates to produce more number of particles.
20.Assertion : Two liquids nitric acid and water form a maximum boiling azeotrope when mixed in the ratio of 68% and 32% respectively.

Reason : Interaction between nitric acid and water are stronger than nitric acid - nitric acid interactions and water - water interactions.

SYNOPSIS

SOLUTIONS

SOLUTION=SOLUTE+SOLVENT

SOLUTION is the homogeneous mixture of two or more than two components. Most of the solutions are binary i.e. consists of two components out of which that is present in the largest quantity is called solvent \& one which is present in smaller quantity called solute.

EXPRESSING CONCENTRATIONS OF SOLUTIONS

Mass percentage :Massofsoluteper100gof solution Mass \% = (mass ofsolute / totalmassof solution) X100
Volume percentage : volume of soluteper100mlof solution Volume \% = (volume of solute/ total volume of solution) X 100

Parts per million: parts of a component per million $\left(10^{6}\right)$ parts of the solution.
ppm=no. of parts of the component / total no. of parts of all components of the sol. X10 ${ }^{6}$
Molefraction(\mathbf{x}): It is the ratio of no. of molesofone component tothe total no. of all the components present in thesolution. Forbinary solution:-theno. of moles of AandB are n_{A} and n_{B} respectively

$$
\text { so, } \mathrm{x}_{\mathrm{A}}=\mathrm{n}_{\mathrm{A}} / \mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}
$$

$; \mathrm{x}_{\mathrm{B}}=\mathrm{n}_{\mathrm{B}} / \mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}$
In binary solution $x_{A}+x_{B}=1$
Molarity: No. of moles of solute dissolved in one litre of solution.
Molarity $(M)=$ moles of solute/ vol. of solution in litre
molality (m):No. of molesof solute per kg of the solvent.
molality $(\mathrm{m})=$ moles of solute $/$ mass of solvent in kg
Molality is independent of temp. whereas molarity is a function of temp. because vol. depends ontemp. and mass does not.
HENRY'S LAW
It states that at a constant temp. the solubility of the gas in liquid is directly proportional to the pressure of the gas above the surface of the liquid.
It also states that thepartial pressure(p) of a gas invapourphaseisproportionaltothe molefraction of the gas (x) in the solution.
$\mathrm{P}=\mathrm{K}_{\mathrm{H}} \mathrm{X}$
K_{H} is Henry's law constant .
APPLICATION OF HENRY'S LAW

- Toincrease the solubility ofCO2 insoda water and softdrinks the bottle is sealed under high pressure.
- To avoid bends, toxic effects of high concentration of nitrogen in the blood the tanks Used by scuba divers are filled with air diluted with He .
RAOULT'S LAW :- it states that :
- For a solution of volatile liquid, the partial vapour pressure of each component of the solution is
directly proportional to its mole fraction present in solution.
$P_{A}=P_{A}^{0} X_{A} \quad P_{B}=P_{B}^{0} X_{B}$
The total pressure is equal to sum of partial pressure. $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}$
For a solution containing non-volatile solute the vapour pressure of the solution is directly proportional to the mole fraction of the solvent.
IDEAL SOLUTION:
The solution which obeys Raoult's law over theentire range of concentration whenenthalpy of mixing and vol. of mixing of pure component to form solution is zero.
CONDITIONS:
I. $P_{A}=P^{0}{ }_{A} X_{A} P_{B}=P_{B}^{0} X_{B}$
II. $\Delta H_{\text {mix }}=0$
III. $\Delta V_{\text {mix }}=0$

Thisis only possible if A-B interactionisnearly equal tothose betweenA-A andB-B interactions.Ex:- solution of n -hexane and n -heptane.

NON IDEAL SOLUTION: The solution which do not obey Raoult's law over the entire range of concentrations. CONDITIONS :
l. $\mathrm{P}_{\mathrm{A}} \neq \mathrm{P}^{0}{ }_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}$ and $\mathrm{P}_{\mathrm{B}} \neq \mathrm{P}^{0}{ }_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}$
II. $\Delta \mathrm{H}_{\text {mix }} \neq 0$
III. $\Delta \mathrm{V}_{\text {mix }} \neq 0$

The vapour pressure of such solutions is either higher or lower than that predicted for Raoult's law.
I. If vapour pressure is higher, the solutions shows positive deviation (A-B interactions are weaker than those between A-A and B-B).
Ex: mixture of ethanol and acetone .
$\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{A}}{ }^{0} \mathrm{X}_{\mathrm{A}} ; \mathrm{P}_{\mathrm{B}}>\mathrm{P}_{\mathrm{B}}{ }^{0} \mathrm{X}_{\mathrm{B}}$
$\Delta \mathrm{H}_{\text {mix }}=$ Positive $; \Delta \mathrm{V}_{\text {mix }}=$ Positive
II. If vapour pressure islower, the solution shows negative deviation (A-B interactions are stronger than those between A-A and B-B).
III. Ex: mixture of chloroform and acetone.
IV. $\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{A}}{ }^{0} \mathrm{X}_{\mathrm{A}} ; \quad \mathrm{P}_{\mathrm{B}}<\mathrm{P}^{0}{ }_{\mathrm{B}} \mathrm{X}_{\mathrm{B}}$
V. $\Delta \mathrm{H}_{\text {mix }}=$ negative $\Delta \mathrm{V}_{\text {mix }}=$ negative

AZEOTROPE

Mixture of liquid having the same composition in liquid and vapour phase and boil at constant temp.
Azeotropes are of twotypes :-
a) Minimum boiling azeotrope :- the solution which shows a large positive deviation from Raoult'slaw. Ex-ethanol- water mixture.
b) Maximum boiling azeotrope :- the solution which shows large negative deviation from Raoult'slaw.Ex- nitric acid-watermixture.
COLLIGATIVEPROPERTIES Properties of ideal solution which depends uponno. of particles of solute but independent of the nature of the particles are called colligative properties.

1. RELATIVE LOWERINGOFVAPOUR PRESSURE

$\mathrm{P}^{0} \mathrm{~A}-\mathrm{P}_{\mathrm{A}} / \mathrm{P}^{0} \mathrm{~A}=\mathrm{XB}$
$\mathrm{XB}=\mathrm{nB} / \mathrm{nA}+\mathrm{nB}$

$\mathrm{PA} / \mathrm{P}^{0} \mathrm{~A}=\mathrm{nB} / \mathrm{nA}_{\mathrm{A}}$
$\mathrm{P}^{0} \mathrm{~A}-\mathrm{PA} / \mathrm{P}^{0} \mathrm{~A}=\mathrm{WB}_{\mathrm{B}} \mathrm{MA}_{\mathrm{MB}} \mathrm{WA}$

2. ELEVATIONOFBOILINGPOINT

$\Delta \mathrm{Tb}=\mathrm{kbm}$ Where,$\Delta \mathrm{T} \mathrm{b}=\mathrm{Tb}_{\mathrm{b}}-\mathrm{T}^{0} \mathrm{~b}$
$\mathrm{Kb}=$ molalelevationconstant/Ebullioscopic constant
$\mathrm{m}=$ molality
$\mathrm{M}=\mathrm{kb}_{\mathrm{b}} 1000 \mathrm{WB} / \Delta \mathrm{Tb}_{\mathrm{b}}$

3. DEPRESSIONINFREEZINGPOINT

$\Delta \mathrm{T}^{\top}=\mathrm{Km}^{\mathrm{f}} \quad$ where, $\Delta \mathrm{T}=\mathrm{T}^{\dagger}-\mathrm{T}$
$\mathrm{Kf}=$ molal depression constant / Cryoscopic constant
$\mathrm{m}=$ molality
$\mathrm{M}=\mathrm{kf}_{\mathrm{f}} 1000 \mathrm{WB}_{\mathrm{B}} / \Delta \mathrm{T}_{\mathrm{f}} \mathrm{W}_{\mathrm{A}}$

4. OSMOTIC PRESSURE

The excess pressure that must be applied to a solution side to prevent osmosis i.e.to stop the passage of solvent molecules into it through semi-permeable membrane is called osmotic pressure.
$\Pi=$ CRT
$\Pi=\mathrm{n} / \mathrm{VRT}(\mathrm{n}=\mathrm{no}$. of moles; $\mathrm{V}=$ =volume of solution(L)
$\mathrm{R}=0.0821 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$; $\mathrm{T}=$ temperature in kelvin

ISOTONIC SOLUTION

Two solutions having same osmotic pressure and same concentration are called isotonic solutions.
Hypertonic solutionhave higherosmotic pressure andhypotonic solutionhavelower osmotic pressure than the other solution.
0.91% of sodium chloride is isotonic with fluid present inside blood cell.
VAN'T HOFF FACTOR (i)
Ratioofnormalmolecularmasstotheobservedmolecularmassofthesolute. $\mathrm{i}=$
normal molecular mass/ observed molecular mass
= observed colligative properties / calculated value of colligative properties
i<1(forassociation)
i>1 (fordissociation)

MODIFIED FORMS OF COLLIGATIVE PROPERTIES

1) $\mathrm{P}^{0}{ }_{\mathrm{A}}-\mathrm{P}_{\mathrm{A}} / \mathrm{P}_{\mathrm{A}}^{0}=\mathrm{i} n_{B} / n_{\mathrm{A}}$
2) $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{iKb} \mathrm{m}$
3) $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$
4) $\Pi=\mathrm{iCRT}$

2 MARKSQUESTIONS

Q1. State Henry'slaw. What is the significance of $\mathbf{K H}_{\mathbf{H}}$?

Ans. Henry's Law:Itstates that"thepartial pressureofthegasinvapourphase(p)isdirectly proportional to the mole fraction ofthe gas(x)in the solution", and is expressed as: $\mathrm{p}=\mathrm{K}_{\mathrm{H}} \mathrm{X}$ where , KH istheHenry'sLaw constant SignificanceofKH:Higherthe valueofHenry'slaw constant K_{H}, the loweris the solubility of the gas in the liquid. Q2.How is that measurement of osmotic pressure is more widely used for determining molar masses of macromoleculesthantheelevationinboiling pointordepressioninfreezing point of theirsolutions?
Ans. The osmotic pressure method has the advantage over elevation in boiling point or depression in freezing point for determining molar masses of macromolecules because

1. Osmotic pressure ismeasured atthe room temperatureandthe molarity of solution is usedinsteadofmolality.
2. Compared to other colligative properties, its magnitude is large even for very dilute solutions.

Q3. Suggest the most important type of intermolecular interaction in the following pairs:
i) n-hexane andn-octane
ii) methanoland acetone

Ans. i) Dispersion or London forces as both are non-polar.
ii) Dipole-dipole interactions as both are polar molecules.

Q4. Calculate the mass percentage of aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ in acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ when 6.5 g of $\mathrm{C} 9 \mathrm{H}_{8} \mathrm{O}_{4}$ is dissolved in 450 g of CH 3 CN .
Ans. Mass of solution $=6.5 \mathrm{~g}+450 \mathrm{~g}=456.5 \mathrm{~g}$
Mass\% of aspirin $=\frac{\text { Mass of aspirinX100 }}{\text { Mass of solution }}$

$$
=6.5 / 456.5 \mathrm{X} 100=1.424 \%
$$

Q5. If $\mathbf{3 0} \mathbf{~ m L}$ of $\mathbf{0 . 5} \mathbf{~ M ~ H 2 S O 4 ~ i s ~ d i l u t e d ~ t o ~}$

500 mL . What is concentration of diluted solution.
Ans. M1V1=M2V2 i.e M2 $=0.5 \times 2 \times 30 / 500=0.06 \mathrm{M}$

3 MARK QUESTIONS

Q1. Non-ideal solution exhibit either positive or negative deviations from Raoult's law. What are these deviation and whyare they caused? Explain with one examplefor each type.
Ans. When the vapour pressure of a solution is either higher or lower than that predicted by Raoult's law, then the solution exhibits deviation from Raoult's law. These deviation are caused when solute -solvent molecular interactions A-Bare either weak or stronger than solvent - solvent A-B or solute- solute B-B molecular interactions. Positive deviations : When $\mathrm{A}-\mathrm{B}$ molecular interactions are weaker than $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ molecular interaction. For example, amixtureofethanol and acetone.

Negative deviations: When A-B molecular interaction are stronger than A-A and B-B molecular interaction. For example, a mixture ofchloroform and acetone.
Q2 a) Why is an increase in temperature observed on mixing chloroform and acetone?
b) Why does sodium chloride solution freeze at a lower temperature than water?

Ans: a) The bonds between chloroform molecules and molecules of acetone are dipole-dipole interactions but on mixing, the chloroform and acetone molecules, they start forming hydrogen bonds which are stronger bonds resulting in the release ofenergy. This gives risetoan increase in temperature.
b) When a non- volatile solute is dissolved in a solvent, the vapour pressure decreases. As a result, the solvent freezes at a lower temperature.
Q3. A solution of glycerol ($\mathrm{C} 3 \mathrm{H8O} 3$) in water was prepared by dissolving someglycerolin 500 g of water. This solution hasa boiling point of 100.42 C while pure water boils at 100-C. What mass of glycerol was dissolved to make the solution ? (Kb of water $=0.512 \mathrm{Kkg} / \mathrm{mol}$)

Ans. $\Delta \mathrm{Tb}=100.42^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}=0.42^{\circ} \mathrm{C}$ or $0.42 \mathrm{~K} ; \mathrm{WA}=500 \mathrm{~g} ; \mathrm{Kb}=0.512 \mathrm{Kkg} / \mathrm{mol}$; $\mathrm{MB}=92 \mathrm{~g} / \mathrm{mol}$ Substituting these values in the expressions, $\mathrm{W}_{\mathrm{B}}=\Delta \mathrm{Tb} \times \mathrm{MB} \times \mathrm{W}_{\mathrm{A}}$

Kb x 1000

$$
\mathrm{WB}=\underline{0.42 \times 92 \times 500}=37.73 \mathrm{~g}
$$

$$
0.512 \times 1000
$$

Q4. Determine the amount of $\mathrm{CaCl}_{2}(\mathrm{i}=2.47)$ dissolved in 2.5 litre of water such that its osmotic pressure is 0.75 atm at $27^{\circ} \mathrm{C}$.
Ans. $\quad \Pi=\mathrm{iCRT}$

Molar mass of $\mathrm{CaCl}_{2}, \mathrm{M}=40+2 \mathrm{X} 35.5=111 \mathrm{~g} \mathrm{~mol}^{-1}$
Therefore, mass of CaCl_{2},

$$
\mathrm{WB}=\underline{0.75 \mathrm{~atm} \times 111 \mathrm{~g} / \mathrm{mol} \times 2.5 \mathrm{~L}}
$$

$2.47 \times 0.0821 \times 300 \mathrm{~K}$
$=3.42 \mathrm{~g}$
5. The molar freezing point depression constant for benzene is $4.90 \mathrm{~K} \mathrm{kgmol}^{-1}$. Selenium exists as polymerize ${ }^{\times}$.When $3.26 \mathrm{gmofSeisdissolvedin226gmofbenzene,theobserved} \mathrm{freezing} \mathrm{point} \mathrm{is} 0.112{ }^{0} \mathrm{C}$ lowerthanforpurebenzene.DecidethemolecularformulaofSelenium.(At.wt.ofselenium is78.8gmol ${ }^{\mathbf{- 1}}$)

Ans $\quad \Delta \mathrm{T}_{\mathrm{f}}=\quad 1000 \times \mathrm{K} \underline{x} \underline{x W} \underline{B}$
WA X MB
$0.112 \mathrm{~K}=1000 \times 4.9 \times 3.26$
$M_{B}=1000 X 4.90 \times 3.26 / 226 \times 0.1112=63 \mathrm{~g} / \mathrm{mol}$
No. of Se atoms in a molecule $=631 \mathrm{~g} / \mathrm{mol} / 78.8 \mathrm{~g} / \mathrm{mol}=8$
Therefore, molecular formula of Selenium $=\mathrm{Se} 8$

5 MARKSQUESTION

Q1.a) State Raoult's Law for a solution containing volatile components. How does Raoult's law become a special case of Henry's Law?
 b) 1.00 gofanon -electrolytesolute dissolvedin 50 g of benzeneloweredthefreezing point of abenzene by
 0.40 K . Findthemolar mass of the solutef. $\left(\mathrm{K}\right.$ for benzene $=5.12 \mathrm{~K} \mathrm{kgmol}^{-1}$)
 Ans. a)For a solution of volatile liquids, Raoult's law states that the partial vapour pressure of each component of the solutionisdirectly proportionaltoitsmole fractionpresent in solution, i.e., $\mathrm{pA}^{\circ} \propto_{\mathrm{XA}}$

OR

$$
\mathrm{p}_{\mathrm{A}}=\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{o}} \mathrm{x}_{\mathrm{A}}
$$

According to Henry's Law, the partial pressure of a gas invapour phase (p)is Directly proportional to mole fraction(x) of the gasin the solution.
i.e., $\mathrm{p}=\mathrm{KHX}$ on comparing it withRaoult'sLawitcan beseen that partial pressure of the volatile component or gas is directly proportional to its mole fraction insolution
i.e; $p \propto_{X}$
only the proportionality constant KH differs from $\mathrm{p}_{\mathrm{A}}{ }^{\mathrm{O}}$. Thus, it becomes a special case of
Henry's law in which $\mathrm{KH}=\mathrm{p}_{\mathrm{A}}{ }^{\circ}$.
b) Substituting the values of various terms involved in equation

$$
\mathrm{MB}=\frac{\text { Kf x WB } \times 1000}{\Delta \mathrm{Tf} \times \mathrm{WA}}
$$

$$
\mathrm{MB}=\underline{.12 \times 1.00 \times 1000}=256 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$$
0.40 \times 50
$$

Q2.a)Calculatethe molarity of a sulphuricacid solution in which the mole fraction of water is 0.85 .
b)The graphical representation of vapour pressure of two component system asa function of compositionis given alongside.
i) Are the $\mathrm{A}-\mathrm{B}$ interactions weaker, stronger or of the same magnitude as $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$
ii) Name the typeof deviation shown bythissystem fromRaoult's law.
iii) Predict the sign of Δ mix H for this system.
iv) Predict the sign of $\Delta_{\text {mix }} V$ for this system.
v) Giveanexampleofsuch asystem.
vi) What type of azeotrope will thissystem form, if possible?

Ans. a)
$\mathrm{n}_{\mathrm{A}} / \mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}=0.85$
$\mathrm{n}_{\mathrm{B}} / \mathrm{n}_{\mathrm{A}}+\mathrm{nB}=1-0.85$.

Eq (II)/Eq(I)
$\mathrm{n}_{\mathrm{B}} / \mathrm{n}_{\mathrm{A}}=0.15 / 0.85$
$\mathrm{n}_{\mathrm{B}}=0.15 / 0.85 \mathrm{X} \mathrm{n}_{\mathrm{A}}$
$\left(\mathrm{n}_{\mathrm{A}}=1000 / 18\right)$
hence molality $=9.8 \mathrm{~m}$
b) i) Stronger
ii) Negative deviation
iii) Negative
iv) Negative
v) 20% acetone and 80%
chloroform by mass
vi) maximum
boiling azeotrope

Gaseous Solutions	Gas	Gas	Mixture of oxygen and nitrogen gases
	Liquid	Gas	Chloroform mixed with nitrogen gas
Liquid Solutions	Solid	Gas	Camphor in nitrogen gas
Gas	Liquid	Oxygen dissolved in water	
Solid Solutions	Liquid	Liquid	Ethanol dissolved in water
Solid	Liquid	Glucose dissolved in water	
Gas	Solid	Solution of hydrogen in palladium	
	Liquid	Solid	Amalgam of mercury with sodium
Solid	Solid	Copper dissolved in gold	

