HANDOUT-4/4

III) CONSTRUCTION OF A TRIANGLE WHEN THE MEASURE OF TWO OF ITS ANGLES AND THE LENGTH OF THE SIDE INCLUDED BETWEEN THEM IS GIVEN(ASA CRITERION)

Example: Construct $\triangle X Y Z$, if it is given that $X Y=6 \mathrm{~cm} m Z X Y=30^{\circ}$ and $\mathrm{m} \triangle X Y Z=100^{\circ}$
Step:1) Draw a rough sketch with the given measurements (to decide how to proceed to the construction of the required triangle)

Step: 2) Draw XY of length 6 cm .

Step: 3) At ' X ', draw a ray XP making an angle of 30° with XY. (Z must be somewhere on the ray XP)

Step: 4) At' Y^{\prime}, draw a ray YQ making an angle of 100° with YX . (Z must be on the ray YQ also)

Step: 5) Z has to lie on both the rays XP and YQ . So, the point of intersection of the two rays is ' Z '

The required $\triangle X Y Z$ is formed.

IV) CONSTRUCTING A RIGHT ANGLED TRIANGLE WHEN THE LENGTH OF ONE LEG AND ITS HYPOTENUSE ARE GIVEN (RHS CRITERION)

Example: Construct $\triangle \mathrm{LMN}$, right angled at M , given that $\mathrm{LN}=5 \mathrm{~cm}$ and $\mathrm{MN}=3 \mathrm{~cm}$
Step: 1) Draw a rough sketch with the given measurements (to decide how to proceed to the construction of the required triangle)

Step:2) Draw MN of length 3 cm .

Step: 3) At 'M', draw MX $\perp \mathrm{MN}$. (L should be somewhere on this perpendicular)

Step: 4) With ' N ' as centre, draw an arc of radius 5 cm . (L must be on this arc, since it is at a distance of 5 cm from N)

Step: 5) L has to be on the perpendicular line MX as well as on the arc drawn with centre N . Therefore, L is the meeting point of these two.

The required $\triangle L M N$ is formed.

